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Prognostics
• Produces information about remaining useful life

• Now have information that my component/system will fail in x 
time units

• So, what are we going to do?
• Repair now?
• Repair later?
• Change load?
• Let it fail?

• What we do depends on a lot of other things
• Need to justify decision



Decisions, decisions
• Decision-making: Is it easy?

• Yes
• If my problem is simple

• No
• If my problem is not simple
• Need to also absorb non-Prognostic 

information sources



Some non-prognostic information
• Fleet-level considerations

• Needs to repair other assets

• Logistics Considerations
• Supply Chain constraints
• Cost of repair
• Shop loading

• Contractual obligations
• Uptime
• Mission completion
• Warranties
• Insurance

• Policies, Laws, Regulations
• Maintenance policies
• Regulatory mandates
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Decision Making in PHM
• HM Turns Prognostics into Action
• Take all inputs and find best answer(s)

Make 
Decision

Prognostics

Cost of repair

Shop Loading

Supply Chain Info

Operational requirements

Contractual constraints

…

Action



Complications
• Assimilation and interpret the information sources
• Determine best course(s) of action non-trivial task. 

– large volume of information from different sources
– partially conflicting information

– uncertainty associated with the pieces of information
– large possible set of actions. 

– partially conflicting goals
– uncertainty
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What is the Best Decision?

• There are a multitude of “best” solutions
• Choose a preferred one
• Difficult to automate

– knowledge of prevailing conditions
– dynamic
– situational

• Requires further refinement
• e.g., with human insight

BEST

BAD



Complexity

Growth of number of decision solutions
• Problem complexity growth quickly
• But also increased number of 

satisfiable missions, mission 
reliability, safety, mission success 
rate and part availability

• Problem complexity
With 3 Missions

With 3 Missions to be Satisfied
Max # of Asset 

Parts
Total # of Potential 

“Plans”

5 196,608
4 24,567

6 1,572,864
7 12,582,912

m.(m-1).2(m.p)

where m is number of missions to be satisfied;
p is number of parts per asset.
we assume there are as many assets available to satisfy the missions



Optimization Progress

Initial population nth generation n+mth generation
% Availability  A(x)
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Trade-Off Remains
• Need to achieve balance when multiple missions compete 

for the same resources (parts and time, man-power)
• Example: non-dominated, alternative operational plans for 

a group of 8 aircraft 

• User indicates preferences for various tradeoffs to rank the 
alternatives

User selects preferred 
solutions



Needed: DSS
• Decision support system that ensures “sound” decisions 

– Overcome limited cognitive capacity in handling large quantities of 
information. 

• Provide mechanism for discovery and evaluation of optimal 
decision alternatives 

– Subject to operational boundary conditions. 
• Enable elicitation and application of user preferences and 

constraints 
– Take into account different prognostic and other information sources
– Equipment status
– Variables and constraints related to system logistics
– Maintenance
– Operations



Problem Formulation
For a time horizon T at a given instant t,
Suppose,
MT(t) ={m1,m2,m3…} is a set of Missions to be satisfied in time horizon T where,

mi = (ri,ci, Ci) with,
• ri desired Mission Reliability,
• ci Mission Capability and
• Ci set of constraints related to the time within which mission mi is to be met

A={a1,a2,a3…} is a set of available assets where,
• aj={p1j, p2j,p3j…} where pij is part i in asset j

P(t)={ (p1,n1,c1,t1), (p2,n2,c2,t2), (p3,n3,c3,t3), …} is an inventory of parts available at
time t for use in repair where,

(pk,nk,ck,tk) is the current inventory with nk units of availability of the part pk
with cost of each part being ck and repair or replacement time tk



Problem Formulation, contd.
What is the best set of assignments from
• P → A (we refer to this as part allocation)
• A → MT(t) (we refer to this as asset allocation)
• such that
• MT (t) is maximally satisfied
while minimizing total cost, part usage, and total time to repair?



Optimization Algorithms

• Iterative (“gradient”) methods
• Walk down the mountain where the slope is the 

steepest 
• May get stuck in local valley
• Gradient-free algorithms

• Explore new area based on heuristics
• Can “jump” over a hill
• May never get to true optimal point

Glarus; image credit: planetware.com



Iterative Algorithms (partial listing)
• Evaluate Hessian

• Newton’s method
• Sequential quadratic programming
• Interior points method

• Evaluate Gradients
• Coordinate descent methods
• Conjugate gradient methods
• Gradient descent 
• Subgradient methods
• Bundle method of descent
• Ellipsoid method
• Conditional gradient method (Frank–Wolfe)
• Quasi-Newton methods
• Simultaneous perturbation stochastic approximation



Gradient-Free Algorithms (partial listing)
• Memetic algorithm

• Differential evolution

• Evolutionary algorithms

• Dynamic relaxation

• Genetic algorithms

• Hill climbing with random restart

• Nelder-Mead simplicial heuristic: A popular heuristic for approximate minimization (without calling gradients)

• Particle swarm optimization

• Cuckoo search

• Gravitational search algorithm

• Artificial bee colony optimization

• Simulated annealing

• Stochastic tunneling

• Tabu search

• Reactive Search Optimization (RSO)[8] implemented in LIONsolver



Evolutionary Optimization
start
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Convergence/ 
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High 
Dimensional

Search

X: Design Structure 
& Parameters

Performance
Evaluation:

Y=f(X,E)
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More Detail on Decision Module

Apply Ops-specific
constraints to FGPO

Default reasoning:
search only in GPO

Report 
plans

State inventory
requirements to 

make plan feasible

Encourage user to weaken constraints

Decisioning
using visual interface

Exhaustive search & evaluation of plan space 
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• 7858 plans to 
begin
• All are optimal
• Only some are 
feasibleEach point in 

these plots is a 
plan along 

different 1D and 
2D axes that 

measure
some plan-

variable

Interactive visualization and preference expression

1D Range-plots of all variables 
of interest to user

Subset of feasible plans, given the
part availability (inventory)



Interactive visualization and preference expression

User-selection1: Select only feasible plans, 
using mouse-click

Corresponding selected points 
are colored in all open plots



Use Zoom option to 
eliminate infeasible plans

Interactive visualization and preference expression

Intrinsic trade-offs in 
Reliabilities along different 
missions visible

Only feasible plans from 
previous selection are 
retained in all plots



Interactive visualization and preference expression

User selects best 
compromise plans that 
satisfy both missions 
reasonably well from 
available set



Tabular view shows only one feasible plan among the remaining 
ones

Use Zoom option to retain 
only selected plans
(we’re down to 19 plans)



User now selects plans 
that have high values of 
FixRate for Mission1 from 
the 1D plot using mouse
(we’re down to 3 plans)



Global Plan1:
Asset2 to Mission1
Asset 1 to Mission 2
Repair action 56 for 

Asset1
Repair action 70 for 

Asset 2

Global Plan2:
Asset2 to Mission1
Asset 1 to Mission 2
Repair action 57 for 

Asset1
Repair action 70 for 

Asset 2

Global Plan3:
Asset2 to Mission1
Asset 1 to Mission 2
Repair action 56 for 

Asset1
Repair action 71 for 

Asset 2

With only 3 plans left to examine, user looks at tabular representation of the remaining plans
and selects one for deployment to maintenance and operations platform



Concluding Remarks
• Prognostics can make Maintenance smarter, if:

• Mitigation decision is made in methodical fashion

• Decision-Making can be framed as a Multi-Objective Dynamic Problem
- Insight necessary to make right operational decisions
- Complexity of information that needs to be processed exceeds cognitive, 

information processing capacity of human decision-makers
• potential of making suboptimal decisions

- Allow PHM user to collaborate in decision-making process 
• drive selection and eval. of operational scenarios and plans. 
• aids in discovery and eval. of optimal decision alternatives
• subject to operational boundary conditions and user prefs.

• Overall maturity of solutions still low
• Special needs for real-time solutions for autonomous systems



Moxi®



Goals and Decisions:
What subset of asset-mission 
assignments should I make?

OR
What is the optimal 

set of mission plans?
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What is the optimal set of 
replenishment plans?

ASSET
PART  

P1
P2
.
.

Pj

HEALTH  
h1
h2
.
.
hj

ASSET
PART  

P1
P2
.
.

Pj

HEALTH  
h1
h2
.
.
hj

MAINTENANCE

Goals and Decisions:
Which parts in which asset

should I replace?
OR
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